Chemical bonding at the metal–organic framework/metal oxide interface: simulated epitaxial growth of MOF-5 on rutile TiO2
نویسندگان
چکیده
Thin-film deposition of metal–organic frameworks (MOFs) is now possible, but little is known regarding the microscopic nature of hybrid hetero-interfaces. We first assess optimal substrate combinations for coherent epitaxy of MOFs based on a lattice matching procedure. We then perform a detailed quantum mechanical/molecular mechanical investigation of the growth of (011) MOF-5 on (110) rutile TiO2. The lowest energy interface configuration involves a bidentate connection between two TiO6 polyhedra with deprotonation of terephthalic acid to a bridging oxide site. The epitaxy of MOF-5 on the surface of TiO2 was modelled with a forcefield parameterised to quantum chemical binding energies and bond lengths. The microscopic interface structure and chemical bonding characteristics are expected to be relevant to other hybrid framework-oxide combinations.
منابع مشابه
Periodic DFT+D Molecular Modeling of the Zn-MOF-5(100)/(110)TiO2 Interface: Electronic Structure, Chemical Bonding, Adhesion, and Strain
Electronic structure, bonding characteristics, adhesion, and stress energy of the Zn-MOF-5(100)/(110) rutile interface were modeled by using periodic DFT+D calculations, corroborated by simulation of high resolution transmission electron microscopy (HR-TEM) images. Adjustment of the flexible metal−organic framework (MOF) moiety to the rigid rutile substrate was achieved within a supercell compr...
متن کاملApplication of a nanoporous metal organic framework based on iron carboxylate as drug delivery system
In the present study, a nanoporous metal organic framework (MOF) based on iron metal and amino terephthalate ligand MIL-101-NH2-Fe has been used as a carrier for loading and in vitro release of 5-flurouracil (5-FU) anticancer drug. The 5-FU drug loaded MOF was 13 wt % by using thermogravimetric analysis (TGA). The 5-FU release was monitored under physiological condition at 37°C, pH 7.4 in simul...
متن کاملApplication of a nanoporous metal organic framework based on iron carboxylate as drug delivery system
In the present study, a nanoporous metal organic framework (MOF) based on iron metal and amino terephthalate ligand MIL-101-NH2-Fe has been used as a carrier for loading and in vitro release of 5-flurouracil (5-FU) anticancer drug. The 5-FU drug loaded MOF was 13 wt % by using thermogravimetric analysis (TGA). The 5-FU release was monitored under physiological condition at 37°C, pH 7.4 in simul...
متن کاملMetal-organic framework materials as nano photocatalyst
Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...
متن کاملMetal-organic framework materials as nano photocatalyst
Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...
متن کامل